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Exploring six modes of an optical parametric oscillator
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We measure the complete quantum state for six modes of the electromagnetic field produced by an optical
parametric oscillator. The investigation involves the sidebands of the intense pump, signal, and idler fields
generated by stimulated parametric down-conversion inside a triply resonant optical resonator. We develop a
theoretical model to successfully interpret the experimental results. The model takes into account the coupling of
the field modes to the phonon bath of the nonlinear crystal, clearly showing the roles of different physical effects
in shaping the structure of the quantum correlations between the six optical modes.
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I. INTRODUCTION

The optical parametric oscillator has been used since the
early days of quantum optics to generate all sort of quantum
states of light. The long list includes squeezed states [1],
intense twin beams [2], Einstein-Podolsky-Rosen entangled
states [3], the squeezed pump field [4], entangled beams
[5], three-mode quantum correlations [6], and three-mode
multicolor entanglement [7]. The field modes produced by
the optical parametric oscillator contain intricate quantum
properties that are not yet completely understood both in theory
and in experiment.

The applications of these nonclassical states in the
continuous-variable domain goes from the use of squeezing
for ultrasensitive measurements [8,9] to the demands for
entanglement in quantum information processing [10], with
convergence of experiments for discrete and continuous vari-
ables of the electromagnetic field [11]. Moreover, multimode
entangled states in the continuous-variable domain are inter-
esting candidates for quantum information processing [12],
leading to the search for sources involving modes defined in
either time [13], frequency [14,15], or momentum [16].

The fundamental process for the generation of these non-
classical states of light is the reversible exchange of energy
among the pump field and the two down-converted modes.
With the aid of optical cavities, this effect is enhanced, and the
output states can be calculated with the help of the input-output
formalism for optical cavities and the master equation of the
interacting Hamiltonian for the three modes of the field [17].

Nevertheless, a detailed investigation of the detection pro-
cess leads to a more complete description of the quantum state
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represented in the basis of field quadratures [18]. In fact, optical
detection is generally based on interferometric techniques,
either by optical homodyning or by resonator self-homodyning
[19]. On the other hand, the measured quantum noise of light is
analyzed in the frequency domain with the help of an electronic
local oscillator to filter the contribution at a given frequency,
associated with the sidebands of the optical field. Therefore,
with careful data treatment, it can be shown that although the
three-mode description remains a valid approach, a more com-
plete one can be obtained for the six detected modes of the field.

Our interest here is to present an explicit evaluation of
the quantum state for the six sideband modes of the optical
parametric oscillator (OPO) that are measured by homodyne
techniques and to access modal correlations that would not be
available in the simplified three-mode picture of single-beam
quantum fluctuations (pump, signal, and idler). By explicitly
using frequency modes of the field in the Hamiltonian, we
are able to deal with open cavities, looking for a more
faithful description of optical setups usually involved in the
nonclassical state generation. This six-mode description allows
the complete analysis of entanglement in the OPO, demon-
strating a deep hexapartite entangled structure for this system.
Moreover, the detailed sideband description puts in evidence
the role of each field in the evolution of the system, something
that remained implicit in the usual treatment [17]. This allows
the complete analysis of the hexapartite entanglement, which
will be treated in detail in another publication [20].

We begin by presenting the Hamiltonian for the sideband
coupling in the nonlinear medium (Sec. II) and the evolution of
the field operators under propagation on this medium (Sec. III).
It is followed by the detailed model for the open cavity that is
used to evaluate the operators of the output field (Sec. IV).
With the relation between the output and the input modes,
momenta of any order can be evaluated. In the present scenario,
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we will limit the study to the second-order momenta and the
reconstruction of the covariance matrix (Sec. V). Nevertheless,
the description would not be complete without the coupling of
phonons to the sideband modes, included in the Hamiltonian
of the system (Sec. VI). The obtained results are used to
describe the latest experimental results from our setup at
different pump powers (Sec. VII), with pump powers up to
75% above the oscillation threshold. The complete description
of the OPO in terms of the measured sidebands opens the
possibility to analyze the multipartite entanglement present
in this system in a wide range of operational conditions
(Sec. VIII).

II. INTERACTION HAMILTONIAN IN THE SIDEBANDS

Each annihilation operator of the field â(n)(t) is associated
with the electric field operator of a propagating wave and, in
the limit of a cavity of infinite size, can be described by the
contribution of operators at each frequency mode as [21]

â(n)(t) = e−iωnt

∫ ∞

−ωn

d�e−i�t â
(n)
ωn+�, (1)

where âωn+� is the photon annihilation operator in the mode
with frequency ω = ωn + � and we explicitly identify the
carrier frequency of each field ωn and the frequency shift of
each sideband relative to this carrier �. The mode n specifies
different directions of propagation, polarizations, or carrier
frequencies.

A common treatment in optical systems considers as the
carrier the mode with a significant population of photons,
which is much larger than the average number of photons in
all other modes. Therefore, in a linearized description of the
fields by their mean value and a fluctuation, where each mode
is described as â

(n)
ωn+� = 〈â(n)

ωn+�〉 + δâ
(n)
ωn+�, we consider that

|αωn
|2 ≡ 〈â(n)†

ωn
â(n)

ωn
〉 � 〈â(n)†

ωn+�â
(n)
ωn+�〉 for |�| > ε, where αωn

is the mean field of the carrier mode n and ε is the carrier
linewidth.

We can describe the interaction among the fields in a
medium with a second-order susceptibility χ with the help
of an effective Hamiltonian

Ĥχ = ih̄
χ

τ
[â(0)(t)â(1)†(t)â(2)†(t) − H.c.], (2)

where τ is the time of flight through the medium and field
indices 0, 1, and 2 stand for pump, signal, and idler modes,
respectively.

Using linearization, we can rewrite this interaction Hamil-
tonian separating the contribution of each carrier and each
sideband. In the triple product, only the terms satisfying the
energy-conservation condition will prevail under propagation.
This includes the relation for the carriers (ω0 = ω1 + ω2), as
well as their sidebands.

This procedure will help to discriminate different contribu-
tions to the resulting Hamiltonian that come from each mode
involved. We will have the triple product of the carriers, asso-
ciated with the mean value of the intense fields, as a constant
value that can be disregarded for the evolution of operators.
Next, there will be a combination of bilinear Hamiltonians for

the specific sidebands shifted by ±� from the central carriers

Ĥχ (�) = −ih̄
χ

τ

[
α∗

ω0

(
â

(1)
ω1+�â

(2)
ω2−� + â

(1)
ω1−�â

(2)
ω2+�

)
+αω1

(
â

(0)†
ω0+�â

(2)
ω2+� + â

(0)†
ω0−�â

(2)
ω2−�

)
+αω2

(
â

(0)†
ω0+�â

(1)
ω1+� + â

(0)†
ω0−�â

(1)
ω1−�

) − H.c.
]
, (3)

defined for � > ε for convenience. Linear terms in the
fluctuations will not satisfy energy conservation, and the
contribution of trilinear or cubic terms will be negligibly small
in comparison with the bilinear terms involving the intense
mean fields of the carriers and will be disregarded in the present
treatment. The Hamiltonian in Eq. (2) may be described by the
sum over the contribution of each Hamiltonian from Eq. (3)
for different frequencies �, Ĥχ = ∫ ∞

ε
Ĥχ (�) d�. Therefore,

under the validity of linearization, each set of sideband pairs
defined by � > ε is decoupled from other sets defined by
�′ 	= �.

On the other hand, upper and lower sidebands are coupled
in pairs in Eq. (3). The field operators of these sidebands
are pairwise measured by the treatment of detected pho-
tocurrents in the frequency domain [18,19]. The treatment
for the evolution of these operators can be simplified if we
change to the measurement basis involving symmetric (S) and
antisymmetric (A) combinations of upper and lower sideband
operators [18]:

â
(n)
s(a) = 1√

2

[
â

(n)
ωn+� ± â

(n)
ωn−�

]
. (4)

On this basis, the Hamiltonian given in Eq. (3) is rewritten as

Ĥχ (�) = Ĥχs + Ĥχa, (5)

where

Ĥχs(a) = −ih̄
χ

τ

[±α∗
ω0

â
(1)
s(a)â

(2)
s(a) + αω1 â

(0)†
s(a)â

(2)
s(a)

+αω2 â
(0)†
s(a)â

(1)
s(a) − H.c.

]
, (6)

where the + (−) sign is used for the symmetric (antisymmetric)
combination of sidebands throughout this article. This Hamil-
tonian describes a process leading to two-mode squeezing in-
volving down-converted modes â

(1)
s(a) and â

(2)
s(a) mediated by the

intense pump field and two beam-splitter processes exchanging
photons between the pump and each down-converted mode,
mediated by the intense complementary down-converted field.
These three processes lead to a rich entanglement dynamics
that was understood as a source of tripartite entangled fields in
the symmetric mode description [22]. Beyond this three-mode
description, a rich mesh of entanglement dynamics involving
six modes is generated by Eq. (3), combining creation and
annihilation of pairs of photons in down-converted sidebands
and photon exchange between pump and down-converted
sidebands, leading to hexapartite entanglement among the
involved modes [20].

On the other hand, Eq. (6) shows that the subspaces of
symmetric and antisymmetric combinations of sidebands are
not coupled by the nonlinear medium. Nevertheless, these
correlations were already observed in experiments [18], and
their origin is found somewhere else in the OPO, as we will
see in Sec. IV.
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III. EQUATIONS OF MOTION AND SOLUTION
BY THE MATRIX METHOD

After passing through the nonlinear medium, the modes
in subspaces of S-A combinations of sidebands will interact
according to the Hamiltonian given by Eq. (5). Therefore, the
equations describing the evolution of the operators during their
propagation through the medium are given by

dâ
(0)
s(a)

dξ
= −χ

[
αω1 â

(2)
s(a) + αω2 â

(1)
s(a)

]
, (7)

dâ
(1)
s(a)

dξ
= χ

[±αω0 â
(2)†
s(a) + α∗

ω2
â

(0)
s(a)

]
, (8)

dâ
(2)
s(a)

dξ
= χ

[±αω0 â
(1)†
s(a) + α∗

ω1
â

(0)
s(a)

]
, (9)

where ξ is the normalized time evolution given by ξ = t/τ .
Defining �As(a) = (â(0)

s(a)â
(0)†
s(a)â

(1)
s(a)â

(1)†
s(a)â

(2)
s(a)â

(2)†
s(a))

T , the set of
differential equations given by Eqs. (7)–(9) and their Hermitian
adjoints can be written as

d �As(a)

dξ
= Mχs(a) �As(a), (10)

where

Mχs(a) = χ

⎛
⎜⎜⎜⎜⎜⎝

0 0 −αω2 0 −αω1 0
0 0 0 −α∗

ω2
0 −α∗

ω1

α∗
ω2

0 0 0 0 ±αω0

0 αω2 0 0 ±α∗
ω0

0
α∗

ω1
0 0 ±αω0 0 0

0 αω1 ±α∗
ω0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠.

From Eq. (10) the field leaving the crystal can be written as

�As(a)|ξ=1 = Gs(a)(χ ) �As(a)|ξ=0, (11)

where

Gs(a)(χ ) = exp

(∫ 1

0
dξMχs(a)

)
. (12)

The matrix Gs(a)(χ ) is defined as the gain matrix of the medium
and allows the evaluation of all â

(n)
ωn±� and their Hermitian

adjoints after passing through the crystal.
In the calculation of the evolution of the terms inside the

cavity, it will be useful to play with all creation and annihilation
operators of the involved sidebands in the vector form �A =
(â(0)

ω0+�â
(0)†
ω0+� · · · â(0)

ω0−�â
(0)†
ω0−� · · · )T , related to vectors �As(a) as

�A = �( �As ,�Aa)T , (13)

where the transformation matrix has the form

� = �−1 = 1√
2

(
16×6 16×6

16×6 −16×6

)
, (14)

where 16×6 are identity matrices of order 6. Taking into account
Eqs. (11) and (13), the transformation of the field operators that
propagated through the medium is given by

�A|ξ=1 = G(χ ) �A|ξ=0, (15)

where

G(χ ) = �(Gs(χ ) ⊕ Ga(χ ))�. (16)

FIG. 1. Basic configuration of OPO, consisting of a nonlinear
medium of length l inside a linear cavity of length L, made of
one coupling mirror (left) and one end mirror (right) accounting for
spurious losses.

The symbol ⊕ represents a direct sum, resulting in a block-
diagonal matrix.

Thanks to the bilinear form of the Hamiltonian in Eq. (3),
we have a linear evolution of the coupling of different fields
through the medium, which will contribute to the equations
describing their evolution inside a cavity.

IV. PHYSICAL EFFECT OF THE OPTICAL CAVITY

It must be kept in mind that our goal is to theoretically model
the evolution of the sideband modes of an OPO, consisting of
a nonlinear crystal located in a linear cavity that we assume
has arbitrary losses for the fields involved, as described in
Fig. 1. The coupling mirror has reflection and transmission
coefficients, rn and tn, for each carrier, and the end mirror,
with reflection coefficient r ′

n and transmission coefficient t ′n,
accounts for spurious losses (which may include absorption
in the crystal or scattering on the optical interfaces). These
coefficients can be conveniently described by loss parameters
γn and γ ′

n as

rn = e−γn , tn = (
1 − r ′2

n

)1/2
,

r ′
n = e−γ ′

n , t ′n = (
1 − r ′2

n

)1/2
. (17)

The total loss in a round trip can be directly evaluated from
γ t

n = γn + γ ′
n.

The equations relating each field operator inside and outside
the cavity (Fig. 1) are given by the beam-splitter transformation

�AR = R �Ain + T�B′, �B = T�Ain − R�B′, (18)

�AT = R′ �Aν + T′ �C, �C′ = T′ �Aν − R′ �C, (19)

with

R = diag(r0r0r1r1r2r2r0r0 · · · ),

T = diag(t0t0t1t1t2t2t0t0 · · · ),

R′ = diag(r ′
0r

′
0r

′
1r

′
1r

′
2r

′
2r

′
0r

′
0 · · · ),

T′ = diag(t ′0t
′
0t

′
1t

′
1t

′
2t

′
2t

′
0t

′
0 · · · ), (20)

keeping the vector ordering for the field operators we used
in the previous section. The fields described by �Ain enter
the cavity through the coupling mirror, while �Aν models the
fields associated with vacuum modes coupled through spurious
losses.
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Each field â
(n)
ωn±� will be transformed by the gain inside the

crystal as described by Eq. (15). In addition, their phase will
evolve during the propagation along the cavity. Under perfect
phase-matching conditions [23], if the refractive index for the
fields is close enough, we may consider that the evolution of the
phase commutes with the gain. Therefore, the relation between
the propagating fields on each side of the cavity will be given
by

�C = e−iϕG(χ )�B, �B′ = e−iϕG(χ ) �C′. (21)

The phase vector

ϕ = ϕ(�) ⊕ ϕ(−�), (22)

with

ϕ(�) = diag
(
ϕ

(0)
� , − ϕ

(0)
� ϕ

(1)
� , − ϕ

(1)
� ,ϕ

(2)
� − ϕ

(2)
�

)
,

gives a different contribution for each sideband depending on
the frequency shift � and on the carrier frequency ωn,

ϕ
(n)
� = ωn + �

2 fn

, (23)

where fn = c/2L(n)
op is the free spectral range for mode n,

with L(n)
op = L + l(nn − 1) being the effective optical length

between the cavity mirrors, depending on the crystal refractive
index nn and on the speed of light c. Evidently, the effective
phase contribution will depend on the detuning between the
carrier and the nearest cavity mode ωc

n, an integer multiple of
2πfn, given by n = ωn − ωc

n.
An important point related to the evolution of the sidebands

should be noted. Each operator will undergo a different phase
evolution, depending on its frequency. That will mix symmetric
and antisymmetric modes, even for null carrier detuning, since
upper and lower sidebands will, in this case, undergo opposite
phase evolutions. This is the cause of the correlations between
symmetric and antisymmetric modes observed in [18].

Combining beam-splitter transformation, phase evolution,
and gain, expressed in Eqs. (18)–(21), we can derive a linear
transformation for the reflected modes, coupled to the incident
modes on the OPO, as

�AR = Rχ
�Ain + T′

χ
�Aν, (24)

where

Rχ = R − Te−iϕG(χ )R′e−iϕG(χ )D(χ )T, (25)

T′
χ = Te−iϕG(χ )[I + R′e−iϕG(χ )D(χ )Re−iϕG(χ )]T′, (26)

and

D(χ ) = [1 − Re−iϕG(χ )R′e−iϕG(χ )]−1. (27)

We should note that the conversion matrix given by Eq. (14),
relating individual modes to the symmetric-antisymmetric
combination, commutes with the reflection and transmission
matrices given by Eq. (20) but not with the phase-evolution
matrix. This is consistent with the fact that the coupling of
symmetric and antisymmetric modes comes from the opposite
phase evolution for the sidebands. Another interesting point
of the formalism adopted here is that it allows the evaluation
of the complete covariance matrix for the sideband modes in

an approach valid for lossy cavities beyond the narrow-band
regime employed in Ref. [24]. In the extreme limit, it could
be used to study the transformation of field in doubly resonant
cavities, even for the mode undergoing a single pass through
the nonlinear medium.

V. HEXAPARTITE QUANTUM STATE

In a way consistent with the description used in Ref. [18],
we can evaluate the covariance matrix for the field quadra-
tures p̂(n)

ω and q̂(n)
ω related to the photon annihilation â(n)

ω

operator as â(n)
ω = (p̂(n)

ω + iq̂(n)
ω )/2, satisfying the commuta-

tion relation [p̂(n)
ω ,q̂

(n)
ω′ ] = 2iδ(ω − ω′). The relevant quadra-

ture operators can be ordered in a column vector �X =
(p̂(0)

ω q̂(0)
ω · · · p̂(n)

ω′ q̂
(n)
ω′ · · · )T , which is directly related to the

vector of field operators by �X = N �A.
Second-order momenta of the field operators are all con-

tained in the symmetrized covariance matrix, evaluated over
the quantum state of the system as

V = 1
2 (〈 �X · �XT 〉 + 〈 �X · �XT 〉T ). (28)

Diagonal elements of V represent variances of single-
mode quadrature operators, denoted as, e.g., 2p̂(n)

ω ≡
〈p̂(n)

ω p̂(n)
ω 〉. Off-diagonal elements are correlations between

different quadratures operators, such as in, e.g., C(p̂(n)
ω p̂

(m)
ω′ ) ≡

(〈p̂(n)
ω p̂

(m)
ω′ 〉 + 〈p̂(m)

ω′ p̂(n)
ω 〉)/2.

The basis transformation given by matrix N applied to
Eq. (24) results in quadrature operators �XR = R̃χ

�Xin + T̃′
χ

�Xν ,
where R̃χ = NRχN−1, T̃′

χ = NT′
χ N−1. Thus, the evaluation

of the covariance matrix for the output fields results in

VR = R̃χVinR̃T
χ + T̃′

χVνT̃′T
χ , (29)

where Vin is the input field covariance matrix and Vν is the
covariance matrix of the field entering through the cavity loss
channels. For losses coupling the cavity to vacuum modes we
have Vν = 1.

The covariance matrix in the basis of S-A combinations of
sidebands will have the same form described in Ref. [18],

VR(s/a) =
(

Vs Cs/a

(Cs/a)T Va

)
. (30)

It is important to note that the elements in the covariance ma-
trices Vs and Va are related by a π/2 rotation on the quadrature
phase space, changing p̂s → q̂a and q̂s → −p̂a in covariance
terms [e.g., C(p̂(n)

s q̂(m)
s ) = −C(q̂(n)

a p̂(m)
a ), 2p̂(n)

s = 2q̂(n)
a ,

etc.]. Therefore, the modeling described here is equivalent to
the semiclassical approach often used in evaluation of the noise
spectra with the help of Langevin equations [18,21,24,25],
and both methods can be used to obtain the same amount of
information about the 2n modes of sidebands for n modes of
carriers. However, it is important to clarify that the method
developed here is explicit in presenting the physical origin of
the correlations between symmetric and antisymmetric modes,
something that was elusive in the semiclassical model. As
demonstrated in Secs. II and IV, these correlations are not
generated only by the cavity or by the squeezing generating
term in Eq. (6), which is the only remaining term for operation
below the oscillation threshold. It is their combination with
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the beam-splitting term, associated with signal and idler mean
fields, that will lead to these correlations.

Considering the particular case where the input is also a
coherent state (Vin = 1), for exact resonance of the carriers
(n = 0), we have

Vs =

⎛
⎜⎜⎜⎜⎜⎝

ρ(0) 0 μ(01) 0 μ(02) 0
0 β(0) 0 ν(01) 0 ν(02)

μ(01) 0 ρ(1) 0 ζ (12) 0
0 ν(01) 0 β(1) 0 ε(12)

μ(02) 0 ζ (12) 0 ρ(2) 0
0 ν(02) 0 ε(12) 0 β(2)

⎞
⎟⎟⎟⎟⎟⎠, (31)

with 12 independent terms, and

Cs/a =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −κ (01) 0 −κ (02)

0 0 λ(01) 0 λ(02) 0
0 κ (01) 0 0 0 −�(12)

−λ(01) 0 0 0 η(12) 0
0 κ (02) 0 �(12) 0 0

−λ(02) 0 −η(12) 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

(32)

with 6 independent terms.
Evaluation of the covariance matrix depends on the value

of the mean fields, as can be seen in Eq. (11). If we go beyond
the linearized model presented in Ref. [23], the contributions
to the gain matrix can be explicitly scaled to the oscillation
threshold |αin

ω0
|2th as

χ2
∣∣αω0

∣∣2 = (1 − e−2γ 0 )

(1 − e−γ t
0 )2

χ2
∣∣αin

ω0

∣∣2
th,

χ2
∣∣αωj

∣∣2 = e2γ t
0 (1 − e−2γ 0 )(

√
σ − 1)

(eγ t
0 − 1)(eγ t

j − 1)
χ2

∣∣αin
ω0

∣∣2
th,

with j = 1,2, where the normalized pump power is given by
σ = |αin

ω0
|2/|αin

ω0
|2th. Moreover,

χ2
∣∣αin

ω0

∣∣2
th =

(
1 − e−γ t

0
)2(

eγ t
1 − 1

)(
eγ t

2 − 1
)

4(1 − e−2γ 0 )

implies that all the mean values can be related only to the cavity
coupling terms and the normalized pump power.

We have retained here the consideration that evolution of the
mean-field amplitude inside the crystal is negligible, as done
in Ref. [23]. Further development can be done if we consider
that these fields vary along the crystal. Nevertheless, in the
integration in Eq. (12), we see that their evolution will not affect
the linearity of the solution regarding the mode operators, and
an effective contribution can be evaluated to obtain a precise
description of the resulting covariances.

While this treatment could account for the OPO spectra
above the threshold, it does not account for extra noise sources,
such as the phonon-photon coupling in the crystal [25]. Its
effect can be included in the interaction Hamiltonian, as we
will see next. This extra phonon noise may also introduce cor-
relations between p̂ and q̂ quadratures within Vs(a) matrices,
as well as correlations in the Cs/a matrix, that can also be found
in the case of nonzero cavity detunings.

VI. PHYSICAL EFFECT OF PHONONS
IN THE NONLINEAR CRYSTAL IN THE QUANTUM

NOISE OF LIGHT

In many experiments with above-threshold OPOs, an extra
phase noise appears in the optical fields which is caused by the
scattering of light by thermal phonons within the crystal and
which considerably modifies the quantum state of the system.
A detailed semiclassical analysis of this effect was realized in
Ref. [25]. In this section we are going to establish a quantum
model for this excess phase noise in order to have a consistent
and complete quantum description of an OPO operating above
threshold.

A. Complete interaction Hamiltonian

Photons that circulate inside the optical cavity of an OPO
may eventually exert low radiation pressure on the crystal,
leading to local-density fluctuations associated with acoustic
phonons. On the other hand, fluctuations of the refractive index,
of optical or mechanical origin, will result in small phase
fluctuations, leading to Stokes and Brillouin light scattering
[26] with frequency shifts in the scattered light. This process
can also be seen as a random detuning of the optical cavity
since it modifies its optical length L(n)

op .
In the present case, we will be interested in the fraction of the

scattering that is coupled to the cavity modes, with small shifts
in the frequency (within the cavity bandwidth). The Hamil-
tonian which correctly models this type of photon-phonon
interaction is known as the optomechanical Hamiltonian [27],
which for this case is given by

Ĥg =
2∑

n=0

3∑
j=1

Ĥ (n,j )
g , (33)

where

Ĥ (n,j )
g = −h̄gnj â

(n)†(t)â(n)(t)[d̂ (j )(t) + d̂ (j )†(t)] (34)

is the optomechanical Hamiltonian for the optical mode â(n)

coupled to the mechanical vibration mode d̂ (j ). We may
consider three possible modes of oscillation: one longitudinal,
with propagation parallel to the wave vector of the field, and
two transversal modes. The optomechanical coupling strength
gnj is expressed as a frequency. It quantifies the interaction
between a single phonon and a single photon. The Hamiltonian
in Eq. (34) reveals that the interaction of a vibrating nonlinear
crystal with the radiation field is fundamentally a nonlinear
process, involving three operators (three-wave mixing), cou-
pling photon number operators to the creation and annihilation
of phonons.

Following a procedure similar to that in Sec. II, we can write
the bosonic operator d (j ) with the help of the Fourier transform
as

d̂ (j )(t) =
∫ ∞

0
d�me−i�mt d̂

(j )
�m

, (35)

with d̂
(j )
�m

being the phonon annihilation operator in the me-
chanical mode of frequency �m. The Hamiltonian in Eq. (33)
can also be described by a sum of contributing terms over many
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different frequencies as Ĥg = ∫ ∞
ε

d�Ĥg(�), where

Ĥg(�) =
2∑

n=0

3∑
j=1

−h̄gnj

[
αωn

(
â

(n)†
ωn−�d̂

(j )†
�

+ â
(n)†
ωn+�d̂

(j )
�

) + H.c.
]
. (36)

Note that, satisfying energy conservation, different processes
may occur from the annihilation of a photon of the carrier,
described in the linearization by the field amplitude αωn

. We
may have either the production of a photon in the lower
sideband and the production of a phonon from the annihilation
of a carrier photon or the production of a photon in the
upper sideband with the annihilation of a phonon. The reverse
processes are described by the Hermitian conjugate terms.

The complete Hamiltonian of the system, which includes
the parametric down-conversion and the photon-phonon inter-
action, is given by

Ĥ (�) = Ĥχ (�) + Ĥg(�), (37)

where Ĥχ (�) and Ĥg(�) are given by the Eqs. (3) and (36),
respectively. Now a complete evaluation of the contributions
of both parametric down-conversion and Brillouin scattering
to the OPO dynamics can be performed.

B. Equations of motion for the field quadrature operators

The evolution of the system should now include the

modes of the phonon bath. Let �A = ( �A,�D)
T

, where the
field operator vector �A was defined in Sec. III and �D =
(d̂ (1)

� d̂
(1)†
� d̂

(2)
� d̂

(2)†
� d̂

(3)
� d̂

(3)†
� )T lists the bosonic operators on the

phononic reservoirs. Therefore, the set of differential equations
describing the dynamics of the operators can be written in
compact form as follows:

d �A
dξ

= M(χ,g) �A, (38)

where

M(χ,g) =
(

Mχ iJg

iKg 06×6

)
. (39)

Here Mχ = �(Mχs ⊕ Mχa)�−1, and

Jg =
(

L
L

′

)
, Kg = (L† −L

′†), (40)

where

Lnj = gnj

(
αωn

0
0 −α∗

ωn

)
, (41)

L
′
nj = gnj

(
0 αωn

−α∗
ωn

0

)
(42)

are the element matrices of matrices L and L
′
, respectively.

In Eq. (40) the dagger denotes the conjugate transpose of the
matrix.

The solution of Eq. (38) is given by

�A|ξ=1 = G(χ,g) �A|ξ=0, (43)

where

G(χ,g) = exp

(∫ 1

0
dξM(χ,g)

)
. (44)

C. Modeling the optical cavity

Following a procedure similar to that in Sec. IV, we
get similar expressions for the output fields of the cavity.
Specifically,

�AR = R(χ,g) �Ain + T′
(χ,g)

�Aν . (45)

The expressions for the matrices R(χ,g) and T′
(χ,g) are similar

to those given in Eqs. (25) and (26) but with the following
modifications to account for the phonon operators:

ϕ → � = (ϕ ⊕ 06×6),

R → R = (R ⊕ 06×6),

T → T = (T ⊕ 16×6),

R′ → R′ = (R′ ⊕ 06×6),

T′ → T′ = (T′ ⊕ 16×6).

D. Solution for the Gaussian quantum state: Covariance matrix
in the eigenbasis of quadrature operators

In analogy with Eq. (29), the covariance matrix for all fields
(optical and phononic) is

VR = R̃(χ,g)VinR̃
T

(χ,g) + T̃
′

(χ,g)VνT̃
′T
(χ,g). (46)

Considering the case where field inputs are in the vacuum
state and the phonon reservoir is in a thermal state, Vth =
(1 + 2n̄th)16×6, we have

Vin = Vν = (112×12 ⊕ Vth), (47)

considering here that the three phonon modes of the reservoir
have the same temperature and the same average number of
phonons n̄th.

The resulting covariance matrix is given by

Vs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ(0) e1 μ(01) e2 μ(02) e3

e1 β(0) e4 ν(01) e5 ν(02)

μ(01) e4 ρ(1) e6 ζ (12) e7

e2 ν(01) e6 β(1) e8 ε(12)

μ(02) e5 ζ (12) e8 ρ(2) e9

e3 ν(02) e7 ε(12) e9 β(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (48)

and

Cs/a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ(0) 0 h1 −κ (01) h2 −κ (02)

0 δ(0) λ(01) h3 λ(02) h4

h3 κ (01) δ(1) 0 h5 −�(12)

−λ(01) h1 0 δ(1) η(12) h6

h4 κ (02) h6 �(12) δ(2) 0

−λ(02) h2 −η(12) h5 0 δ(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(49)

A direct comparison with the matrices in Eqs. (31) and (32)
shows many additional features coming from this added
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FIG. 2. Setup for the reconstruction of the OPO beams’ covari-
ance matrix. PBS, polarizing beam splitter; BS, 50:50 beam splitter;
HS, harmonic separator; IC, input coupler; OC, output coupler (OPO
cavity); FR, Faraday rotator.

thermal reservoir. It is curious that even in the absence of
phonons in the reservoir, those terms still appear due to the
photon-phonon coupling of the zero-temperature fluctuations.
Nevertheless, these terms are small in this case and will not
significantly affect the covariance, even though the resulting
state of the field is no longer pure due to the coupling to extra
modes from the crystal.

VII. EXPERIMENTAL RESULTS

The model developed here can be directly compared to
the experimental results obtained from the setup described in
[18]. The system is a triply resonant OPO operating above
threshold, and the experimental setup is depicted in Fig. 2. The
OPO cavity is pumped by the second harmonic of a doubled
Nd:YAG laser, filtered with a mode-cleaning cavity to ensure
that pump fluctuations are reduced to the standard quantum
level in amplitude and phase for frequencies above 20 MHz.

The filtered pump beam is then injected in the OPO,
with adjustable power, through the input coupler (IC) with
a reflectivity of 70% for the pump field (532 nm) and high
reflectivity (>99%) at 1064 nm. The reflected pumped field
is recovered from the Faraday rotator (FR). The infrared
output coupler (OC) has a reflectivity of 96% at ≈1064 nm
and high reflectivity (>99%) at 532 nm. Both mirrors are
deposited on concave substrates with a curvature radius of
50 mm. The crystal is a type-II phase-matched KTP (potassium
titanyl phosphate, KTiOPO4) with length l = 12 mm, average
refractive index n = 1.81(1), and antireflective coatings for
both wavelengths. The average free spectral range for the three
modes is found to be 4.3(5) GHz. The cavity finesse is 15 for
the pump mode and 124 for the signal and idler modes (the
latter is defined as the mode with the same polarization as
the pump). The overall detection efficiencies are 87% for the
infrared beams and 65% for the pump, accounting for detector
efficiencies and losses in the beam paths. The threshold power
is 60 mW, and the maximum pump power was 75% above the
threshold. In order to reduce the effect of phonon noise on the

system, the crystal is cooled to 260 K, and the OPO is kept in
a vacuum chamber to avoid condensation.

Phase noise measurements were performed using the ellipse
rotation method described in [28,29], with the help of analysis
cavities. Cavities 1 and 2 (for the transmitted infrared beams)
have bandwidths of 14(1) MHz, and cavity 0 (for the reflected
pump) has a bandwidth of 12(1) MHz. This ensures a full
rotation of the noise ellipse for the chosen analysis frequency of
21 MHz. Mode matching of the beams to the analysis cavities
was better than 95%. Combining in-quadrature electronic local
oscillators and cavity detection [18,19], we were able to recon-
struct the covariance matrix of the output sidebands. Since the
detected modes are of Gaussian nature [30], determination of
the covariance matrix is equivalent to the complete tomography
of the output state of the sidebands of the intense optical fields
involved.

Covariances for the intensity fluctuations are shown in
Fig. 3 in terms of the symmetric and antisymmetric modes,
which results in a compact presentation of the covariance
matrix. They present good agreement of the theory and the
experiment. Deviations for the pump field at higher pump
power are consistent with the effects of mismatch in the
pumping field, which are aggravated by thermal lensing of
the crystal. The pump cavity mode will be more depleted
with growing pump power, and the contributions of unmatched
modes will be more relevant, degrading the measurement of
the variance and contributing as an effective loss in detection.
Nevertheless, correlations are less affected in this case and
present better agreement. It is curious to notice that correlations
between the symmetric and antisymmetric modes are observed
for pump and signal (or idler) correlations, as predicted in [18],
revealing that there is more information on the system beyond
the three-mode description. A full description of the measured
state should necessarily involve six fields, and the distinct role
of each sideband becomes relevant for the tomography of the
system.

Phase quadrature measurements of fields of distinct colors
are possible through the use of analysis cavities. The results
shown in Fig. 4 were evaluated with a limited number of adjust-
ing variables to describe the phonon coupling. The complete
model involves three coupling channels between each mode of
the carrier and distinct reservoirs, one for each oscillating mode
of a crystal. Nevertheless, a toy model considering that pump
and idler are coupled to the same reservoir (since they have the
same polarization) and the orthogonally polarized signal with
additional coupling to a second reservoir can be used to adjust
the curves to the data. The best results were obtained with
g01 = 8.0×10−3 for the pump coupling, g21 = 3.6×10−3 for
the idler coupling, and g11 = 1.9×10−3 for signal coupling to
one of the reservoirs and g12 = 2.7×10−3 for signal coupling
to the second reservoir. Thermal phonon population density
was arbitrarily set to Nth = 100, acting just as a multiplicative
constant in our model at high temperatures. It is curious to
notice that

√
g2

11 + g2
12 ∼ g21 and g01 ∼ 2g21, consistent with

the scaling with wavelength described in the semiclassical
model for the phonon noise [25].

It is clear that the photon-phonon coupling leads to an
additional noise in the system, which should degrade purity.
This excess noise can be observed in Fig. 4, where the solid
lines present the expected results with phonon noise, and the
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FIG. 3. Measured variances of the amplitudes of the three fields
coming from the OPO, in the symmetric description, followed by
their respective correlations. Cross correlations between symmetric
and antisymmetric modes.

dashed lines present the corresponding values in the absence
of this noise source. This coupling prevents the observation of
phase squeezing of the pump mode in the present condition
and adds noise to signal and idler fields. Since this additional
noise is not perfectly correlated, it will lead to degradation
of the squeezing level at the sum of the phases, as we would
expect in the generation of entangled modes of the field [17].
Nevertheless, quantum correlations for two [5] and three modes
[7] can be observed if adequate control of the phonons is
available from the cooling of the crystal.

So far, we have presented all the measurements for the 18
terms in matrices given in Eqs. (48) and (49). Nevertheless,

FIG. 4. Measured variances of the phase of the three fields coming
from the OPO, in the symmetric description, followed by their
respective correlations. Cross correlations between symmetric and
antisymmetric modes. Dashed lines are the result we would expect in
the absence of phonon noise.

a complete description of the system should involve all the
correlations between the phase and amplitudes of each field
in the symmetric and antisymmetric descriptions. The present
model shows that for perfect resonance of the carriers the
contribution of these terms should be zero. Experimental
results are close to this situation for low pump powers, as
can be seen in Fig. 5. Cross correlations become effectively
nonzero for growing pump powers, where thermal effects
should provide some change in the refractive index, leading
to small detunings of the carrier modes.
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FIG. 5. Measured correlations between amplitude and phase for each mode in symmetric and antisymmetric descriptions.

VIII. CONCLUSION

In the continuous-variable domain, the combined use of
self-homodyning [31] and demodulation by in-quadrature
local oscillators [18] allows the complete reconstruction of the
state of six modes of the field in an above-threshold OPO. These
modes are related to the sidebands of the down-converted
fields, generated by the nonlinear process, and the pump field,
reflected by the cavity. The results we obtained are in good
agreement with the detailed model developed here, involving
the transformation of the field operators in their reflection by a
cavity, the nonlinear coupling among the fields by the crystal,
and the photon-phonon coupling. For the linear approach we
chose, the model reproduces the so-called semiclassical model
of the OPO, where quantized fields can be associated with
stochastic fluctuations in a Langevin equation, leading to a
spectral matrix, associated with the Fourier transform of the
two-time correlation of the output fields. In the present case,
discrepancies between our model and the semiclassical one
are smaller than 4% of the standard quantum level (except for
amplitude variance of the pump, reaching 9%), with both being
compatible with the experimental results.

The main result of the developed model is the demonstra-
tion that the imaginary part of the spectral matrix, i.e., the
correlations between symmetric and asymmetric combinations

of sidebands [18], has its physical origin not in the nonlinear
process but in the evolution of the fields inside the cavity,
combined with the effective beam-splitter transformation for
down-converted and pump modes, explicitly derived in the
linearized model. This particular effect is not explicit in the
semiclassical treatment. The asymmetries in phase evolution
of upper and lower sidebands lead to the coupling of their
symmetric and asymmetric combinations. These effects will be
small for reduced analysis frequencies and will be maximized
as they get closer to the OPO cavity bandwidth.

The presented model was shown to be suitable for the recon-
struction of the covariance matrix in a linearized regime, which
is valid for small intracavity gain. Since the output fields are in
a Gaussian state for all practical purposes [30], it characterizes
a complete state tomography involving six modes of an OPO
in a wide range of pump values, opening the path to explore
the structure of hexapartite entanglement in this system [20].
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